Transcomputation
 Dr James Anderson FBCS CITP CSci

Agenda

- Rotation
- Angle
- Polar-transcomplex numbers

Rotation

Rotation

$$
\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

- A point (x, y) is rotated by the angle θ to the point $\left(x^{\prime}, y^{\prime}\right)$ by the above matrix
- But we know $\sin \theta=\cos \theta=\Phi$ when $\theta \in\{-\infty, \infty, \Phi\}$
- So what does a non-finite rotation do?

Quiz

- You now know about transreal arithmetic and all transreal rotations so what kinds of software could you totalise?

Angle

Angle

- Real angle is defined via the relationship arc length divided by non-zero radius
- What is the transreal angle when the radius is zero?

Angle

- Lay off a rotation of angle θ in the base of a unit cone using an arc of non-zero length

Angle

- Lay off a rotation of angle $2 k \pi+\theta$ by winding the given arc on the surface of the cone

Angle

- As k increases, what happens to the position of the winding?

Angle

- What is the value of k at the apex of the cone?

Angle

- All transreal angles can be defined via the unit real cone

Polar-transcomplex numbers

Transreal number line

Φ

∞

Transcomplex plane

Revolution of the transreal number line

Φ

Containment

Real

Construction

$$
\mathbb{C}^{T}=\mathbb{C} \cup\{(\infty, \theta) ; \theta \in(-\pi, \pi]\} \cup\{\Phi\}
$$

$$
\Phi
$$

17

Construction

$$
\mathbb{C}^{T}=\mathbb{C} \cup\{(\infty, \theta) ; \theta \in(-\pi, \pi]\} \cup\{\Phi\}
$$

$$
\Phi
$$

Construction

$$
\begin{gathered}
\mathbb{C}^{T}=\mathbb{C} \cup\{(\infty, \theta) ; \theta \in(-\pi, \pi]\} \cup\{\Phi\} \\
\mathbf{\Phi}
\end{gathered}
$$

Construction

$$
\mathbb{C}^{T}=\mathbb{C} \cup\{(\infty, \theta) ; \theta \in(-\pi, \pi]\} \cup\{\Phi\}
$$

Arithmetic

- $\left(r_{1}, \theta_{1}\right) \times\left(r_{2}, \theta_{2}\right)=\left(r_{1} r_{2}, \theta_{1}+\theta_{2}\right)$
- $\left(r_{1}, \theta_{1}\right) \div\left(r_{2}, \theta_{2}\right)=\left(r_{1} / r_{2}, \theta_{1}-\theta_{2}\right)$
- The next lecture explains addition and subtraction

Proofs

- There is a proof that transcomplex arithmetic is consistent if complex arithmetic is
- There is a proof that transreal arithmetic is consistent if real arithmetic is

Conclusion

- All transreal angles can be defined on the real unit cone
- The polar-complex plane is generated by rotating the real line
- The polar-transcomplex plane is generated by rotating the transreal line
- Polar-trancomplex multiplication and division are lexically identical, respectively, to polar-complex multiplication and division

Conclusion

Real

